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Identifying genes underlying memory function will help characterize cognitively

strategies. We estimated episodic memory trajectories in 35,245 ethnically diverse

(APOE)-stratified genome-wide association study (GWAS) analyses and combined indi-
vidual cohorts’ results via meta-analysis. Three independent transcriptomics datasets
were used to further interpret GWAS signals. We identified DCDC2 gene significantly
associated with episodic memory (Pmeta = 3.3 x 10°8) among non-carriers of APOE ¢4
(N = 24,941). Brain transcriptomics revealed an association between episodic mem-
ory maintenance and (1) increased dorsolateral prefrontal cortex DCDC2 expression
(P = 3.8 x 10%) and (2) lower burden of pathological Alzheimer’s disease (AD) hall-
marks (paired helical fragment tau P =.003, and amyloid beta load P =.008). Additional
transcriptomics results comparing AD and cognitively healthy brain samples showed

a downregulation of DCDC2 levels in superior temporal gyrus (P = .007) and inferior
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ory maintenance.
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1.1 | Contextual background

As we age, our cognitive abilities deteriorate,! without necessarily pro-
gressing to dementia. One of the earliest and most striking cognitive
changesinthe aging process is the alteration of memory. Episodic mem-
ory, our ability to remember recently acquired experiences, gradually
deteriorates from middle age to older age. Our ability to create and
store memories (encoding and storage) along with retrieval? becomes
less efficient, interfering with our daily activities.

Major research efforts have focused on trying to distinguish the
memory decline attributable to normal aging from that indicating
pathological aging. Such studies show that the effects of aging on our
memory performance are very heterogeneous, with clear interindi-
vidual vulnerabilities. Some people exhibit little change in their mem-
ory ability to extreme old age, while others experience a rapid and
severe memory decline that might culminate in a clinical diagnosis of
Alzheimer’s disease (AD). Understanding the causal factors underly-
ing over-time memory performance is increasingly important given the
health-care crisis of an aging world’s population. Psychological, health-
related, environmental, education, and genetics® factors have been
reported as significant contributors to the variability observed in the
trajectories of episodic performance across individuals.

Twin and family studies support the notion that episodic mem-
ory is under strong genetic influence in older persons in healthy and
demented populations.* In recent years, different study designs and
approaches have been used to genetically characterize episodic mem-
ory trajectories. The majority of the genetic studies on episodic mem-
ory have been cross-sectional either using genome-wide arrays®>~’
or candidate gene approaches.®-18 Genetic studies based on longi-
tudinal measures of episodic memory are few, and predominantly
focused on candidate genes.!?2° Genome-wide association studies
(GWAS) of cognitive abilities assessing the contribution of com-
mon variants117.1821-29 haye consistently reported modest genetic
effects, partially due to limited sample sizes that compromise the sta-
tistical power to identify loci at a genome-wide significance level. As

3031 such as autoimmune and

reported for other complex phenotypes,
cardiovascular diseases, genomic analysis including rare variants might
reveal its unique roles in cognitive genetics.

In the present study, we integrated common and rare genetic vari-
ants and transcriptomics data for the identification of novel episodic

memory loci.

frontal gyrus (P =.013). Our work identified DCDC2 gene as a novel predictor of mem-

apolipoprotein E stratified analyses, brain transcriptomics, episodic memory trajectories (EMTs),
genome-wide association studies, meta-analysis, rare/common genetic variation

1.2 | Study design and main results
To guarantee a better understanding of the impacts of aging, cohort
differences, and period effects in the trajectories of memory perfor-
mance, we considered a longitudinal study design.

The identification of genetic risk/protective factors underlying
memory function is commonly based on cross-sectional data and
genetic studies based on longitudinal data are less frequently imple-
mented. Contrary to cross-sectional designs in which a temporal
sequence cannot be established, longitudinal methods are uniquely
able to capture genetic variation associated with the rate of cognitive
decline,?? allowing the separation of population trends (fixed effects)
and individual differences about the trends (random effects). The avail-
ability of longitudinal measures of memory performance allows us to
expand genetic analyses beyond the dichotomous case-control pheno-
type, typically resulting in loss of measurement information as well as
effect size and statistical power.

To study trajectories of memory performance in elderly cohorts,
we have used a previously described latent curve models (LCM)
approach.3 The resulting slopes of repeated measures of memory are
used as quantitative phenotype for genetic analyses.3?

Because GWAS of common variants explain a modest fraction of
the genetic variance of cognitive abilities,?> low-frequency and rare
genetic variants have been proposed as responsible for the unchar-
acterized genetic risk underlying cognitive traits.3° A cost-efficient
approach to characterize the contribution of rare variants to mem-
ory function is their genotype imputation, that is, statistical inference
of untyped rare variants’ genotypes based on a reference panel of
whole genome sequenced individuals.>* The publicly available Haplo-
type Reference Consortium (HRC) reference panel contains more than
39 million single nucleotide polymorphisms (SNPs) from 27,165 indi-
viduals, and reported high performance and accuracy for imputation
for admixed populations such as Blacks®> and Caribbean Hispanics.3¢

In addition to the traditional SNP-based approaches,3” we have also
considered gene-based GWAS tests. Gene-based analyses increases
the statistical power of discovery by (1) aggregating the disparate sig-
nals from multiple independent causal variants within the gene and
(2) reducing the multiple testing burden (~1,000,000 million SNPs vs.
~20,000 genes). Moreover, because the impact of genetic heterogene-
ity due to underlying linkage disequilibrium patterns (different SNPs
being linked to the causal variants) is reduced when considering the
gene as the unit of analysis, it can alleviate limitations in replication

leading to more consistent results.38
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In an attempt to improve our understanding of the genetic archi-
tecture of memory function, our study has included participants from
ethnically diverse populations: Caribbean Hispanics and Blacks. A dis-
proportionate majority of participants in cognitive genetics research
are of European descent. However, it is well established that the effect
of genetic variants vary between populations based on the reported
differences in the genetic architecture of populations.3? Moreover,
low-frequency and rare variants tend to be ethnic specific (i.e., exhibit
little sharing among diverged populations) and enriched in admixed
populations.*? The inclusion of multi-ancestry cohorts in genetics stud-
iesis needed to fully characterize human genomic variation, bolster our
understanding of disease etiology, and ensure that genetic testing is
broadly accessible.

Results from apolipoprotein E (APOE)-stratified GWAS analyses
and brain transcriptomics identified doublecortin domain-containing
2 (DCDC2) gene as a novel predictor of memory maintenance among
non-carriers of APOE ¢4. DCDC2 brain expression appeared associated
with episodic memory maintenance and lower burden of pathological
AD hallmarks. Moreover, when AD cases were compared to cognitively
healthy participants, DCDC2 expression was decreased across all brain

areas.

1.3 | Study conclusions, disease implications, and
therapeutic opportunities

Our multiomics data integrative approach using meta-analysis results
from eight independent GWAS of episodic memory trajectories and
brain transcriptomics for three independent cohorts identified DCDC2
as a putative gene for protection against episodic memory decline and
a potential to reduce risk of dementia.

To our knowledge, this is the first study reporting DCDC2 associa-
tion with longitudinal changes in episodic memory performance. Inter-
estingly, the DCDC2 gene was previously reported as genome-wide sig-
nificantly associated with general cognitive function (P < 5x 1078) in
a sample of more than 300,000 subjects from three different European
cohorts including United Kingdom Biobank (UKBB).2>

The DCDC2 gene is one of the most conserved genes of the dou-
blecortin (DCX) superfamily, a group of proteins that regulate fila-
mentous actin structure in developing neurons. DCDC2 binds to tubu-

lin and enhances microtubule polymerization®142

influencing synaptic
plasticity.*® It is well documented that cytoskeleton dynamics in the
adult brain affect fundamental processes, such as memory and learn-
ing, which are often compromised in neurodegenerative diseases.*#4>
In fact, genetically modified mice studies showed that DCDC2 muta-
tions resulted in persistent memory impairments.*¢47 Multiple epi-
demiological genetic studies linked variants within the DCDC2 gene
to reading abilities including dyslexia.*8->> A recent re-evaluation sug-
gested that evidence in support of the DCDC2 deletion as a risk factor
for dyslexia was statistically weak.>® Our results in the non-Hispanic
White sample of the Washington Heights-Inwood Columbia Aging
Project (WHICAP) cohort did not find significant association between

DCDC2 and language trajectories.
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RESEARCH IN CONTEXT

1. Systematic review: Genetic variation contributes to age-
related changes in episodic memory. Genome-wide and
candidate gene approaches to genetically characterize
episodic memory trajectories have predominantly inves-
tigated common variants. Multiomics approaches inte-
grating common and rare variation may enhance the iden-
tification of novel loci associated with episodic memory
maintenance.

2. Interpretation: Episodic memory trajectories were esti-
mated in an ethnically diverse sample of 35,349 elderly
with available genome-wide association study (GWAS)
and transcriptome data. Data integration of GWAS meta-
analysis and brain expression results provided evidence
for DCDC2 gene as a novel candidate gene providing pro-
tection against episodic memory decline. The discovery of
new genes associated with maintenance of episodic mem-
ory performance might allow the development of treat-
ments specifically targeted for different risk-level sub-
populations.

3. Future directions: DCDC2 enhances microtubule poly-
merization and promotes neuronal migration. Future
functional studies will investigate cytoskeleton dynamics
as potential molecular mechanisms underlying the asso-
ciation between DCDC2 and episodic memory mainte-

nance.

Reinforcing its role in brain development, DCDC2 has also been
found to interact with ciliary proteins. Ciliary proteins play an impor-
tant role in neurogenesis and neuronal migration, and underlie a grow-
ing list of human disorders, including developmental delays and cogni-
tive deficits. Protein-protein interaction network analysis®’ revealed
a link between cilia function, neuronal function, and neurological dis-
orders such as AD. These results provide a novel therapeutic avenue in
which drugs targeting proteins in the cilia interactome might be repur-
posed for treating neurological disorders.

The inverse association between brain expression levels and lower
amyloid and tau pathology may selectively upregulate DCDC2 expres-
sioninthe dorsolateral prefrontal cortex, conferring protection against
AD pathology. Follow-up studies are needed to determine whether
reserve mechanisms (brain reserve,®°? cognitive reserve,”®>? and
brain maintenance®?¢%) might act as moderators.

Our results found differential brain expression of DCDC2 when AD
cases and cognitively healthy participants were compared. Specifically,
gene expression in AD cases appeared nominally downregulated for
two brain areas, superior temporal gyrus (temporal lobe), and infe-
rior frontal gyrus (prefrontal cortex). Future studies incorporating neu-
roimaging data will be needed to validate these results and gain a bet-

ter understanding of its neuroanatomical correlates.
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The identification of DCDC2 gene as a predictor of memory mainte-
nance in older adulthood provides the possibility of identifying popula-
tion subgroups at risk of memory decline and dementia, paving the way
for precision medicine intervention.32¢1-63 Compared to the univer-
sal “one-size-fits-all” approach (generalized prevention strategies for
all individuals), a precision medicine approach offers the opportunity
to personalize interventions that hold the promise of advancing mem-
ory decline prevention strategies.®® To be used as a diagnostic system
and more efficient treatment of age-related memory impairment, it will
require (1) defining groups of individuals for whom a cognitive inter-
vention is warranted and (2) developing and testing novel treatments
and interventions that can be applied with a degree of specificity to dis-
tinct subpopulations of individuals.®® Finally, it is important to consider
that relying solely on genetics may miss unknown underlying mem-
ory decline mechanisms. In addition to genetics, a precision medicine
approach should also encompass recommendations to target lifestyle

factors and medical comorbidities on an individual basis.

1.4 | Limitations, unanswered questions, and
future directions

Our study has some limitations. First, trajectories of episodic memory
were modelled as a linear function of time, hence we did not consider
potential nonlinear age effects. Second, we did not consider the contri-
bution of additional protective or/and risk factors, socioeconomic sta-
tus, mental or behavioral health, and clinical comorbid conditions that
may be associated with maintenance/decline of memory. Third, poten-
tial interactions between genetic variants and these risk/resilience
additional factors may also contribute to set courses toward memory
progression over time. Fourth, we cannot rule out the possibility that
additional regulatory mechanisms might regulate DCDC2 expression
variation.

Future translational studies will investigate the role of DCDC2 vari-
ants in cytoskeleton dynamics via generation of CRISPR-pluripotent
cellular models expressing different variants of DCDC2 gene and dif-
ferentiated into neurons (cortical or hippocampal). Cytoskeleton struc-
ture and organelle distribution can be assessed by confocal imaging
using these cell models. Furthermore, expression of proteins involved
in posttranslational modifications of microtubules, such as acetylation,
can be also investigated by western blot and quantitative polymerase

chain reaction analysis.

2 | CONSOLIDATED RESULTS AND STUDY
DESIGN

Using latent class models, we estimated episodic memory trajecto-
ries in 35,245 ethnically diverse older adults representing eight inde-
pendent cohorts. We conducted APOE-stratified GWAS analyses and
combined individual cohorts’ results via meta-analysis. Three indepen-
dent transcriptomics datasets were used to further interpret GWAS

signals.

We identified DCDC2 gene significantly associated with episodic
memory (Pmeta= 3.3 x 108) among non-carriers of APOE ¢4. Brain
transcriptomics revealed an association between episodic memory
maintenance and (1) increased dorsolateral prefrontal cortex DCDC2
expression (P = 3.8 x 1074) and (2) lower burden of pathological AD
hallmarks (paired helical fragment tau P = .003, and amyloid beta [Af]
load P = .008). Additional transcriptomics results comparing AD and
cognitively healthy brain samples showed a downregulation of DCDC2
levels in superior temporal gyrus (P = .007) and inferior frontal gyrus
(P=.013).

3 | DETAILED METHODS AND RESULTS

3.1 | Methods

3.1.1 | Study cohorts

All study participants provided written informed consent and the study
procedures were approved by the institutional review boards within
each of the corresponding institutions. All study procedures were per-
formed in accordance with the Declaration of Helsinki ethical princi-
ples for medical research.

The present study includes eight independent study cohorts: (1) the
Alzheimer’s Disease Genetics Consortium and National Alzheimer’s
Coordinating Center (ADGC_NACC), (2) the National Institute on
Aging Late-Onset Alzheimer Disease Family Based Study (NIA-LOAD),
(3) the Chicago Health and Aging Project (CHAP), (4) the Religious
Orders Study and Rush Memory and Aging Project (ROSMAP), (5)
WHICARP, (6) the Long Life Family Study (LLFS), (7) the Alzheimer’s
Disease Neuroimaging Initiative (ADNI), and (8) the UKBB. Detailed
characteristics and methodologies for study cohorts can be found
elsewhere,33:66-68

Within each of the study cohorts, inclusion criteria for participants
were based on the availability of longitudinal episodic memory scores
(minimum of 2 visits to a maximum of 15), sociodemographic variables
(sex, age, education, and ethnic background), and imputed GWAS geno-
typed data using the HRC v1.1.

An overview of the study design is summarized in Figure S1 in sup-

porting information.

3.1.2 | Episodic memory

Inthe WHICAP cohort, episodic memory was derived as the average of
standardized measures for total immediate recall, delayed recall, and
delayed recognition of the Selective Reminding Tests.? In the ADNI
cohort, the Rey Auditory Verbal Learning Test (RAVLT)2”70 served as
ameasure of episodic memory. In the UKBB, as previously described,?3
participants’ scores on the pairs matching test can be used as a mea-
sure of episodic visual memory. As previously described,?? in the rest
of the cohorts, episodic memory was quantified as the average of the

standardized Wechsler Memory Scale tests.
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3.1.3 | Alzheimer’s disease

In all study cohorts, except for LLFS and UKBB, participants were
classified as dementia patients or non-cognitively impaired (NCI) par-
ticipants using National Institute of Neurological and Communica-
tive Disorders and Stroke-Alzheimer’s Disease and Related Disorders
Association (NINCDS-ADRDA) criteria.”? In the LLFS cohort, demen-
tia status was categorized based on a previously described diagnos-
tic algorithm.”? In the UKBB cohort, cognitive impairment was defined
using a 1.5-standard deviation (SD) cut-off below demographically
adjusted episodic memory scores (age, education, and sex). UKBB
study participants were classified as NCl if their standardized adjusted

memory scores were greater than 1.5 SD below the mean.

3.2 | Statistical analysis
Statistical analyses were performed using a dataset freeze from 2019,
for which complete and accurate phenotypic and genomic information

was available.

3.2.1 | Episodic memory trajectories
As previously described,3? episodic memory trajectories (EMTs) were
derived using latent class mixed models (LCMM). The LCMM estimated

episodic memory slope was used as quantitative outcome.

3.2.2 | GWAS imputation

Genome-wide genotyped data was imputed using the HRC panel (v1.1)

through the Michigan Imputation Server.”3

3.2.3 | Quality control metrics

Samples were excluded for analyses purposes based on cryptic relat-
edness (duplicates or first-degree relatives) calculated as identity by
descent estimates using PLINK”# software, and genotype call missing
rate greater than 10%. Only variants with high imputation quality (r2>

0.8) were retained for analyses purposes.

3.24 | Population substructure
To account for population stratification, principal component analysis
was conducted using PLINK software’# and the top three principal

components were retained as covariates in regression models.

3.2.5 | Gene-based association analyses

Gene-based annotations were generated using ANNOVAR software”
and were limited to intronic, exonic, 3’ and 5’ untranslated regions vari-
ants. Analyses were conducted only for genes with at least 10 anno-
tated variants. Gene-based tests were run using the SNP-set optimal

THE JOURNAL OF THE ALZHEIMER’S ASSOCIATION

sequence kernel association test (SKAT-O) as implemented in EPACTS
software.”® Covariates in the linear regression models included sex,
age at last evaluation, education, and the top three principal compo-
nents. For the LLFS cohort, further covariate adjustment included kin-
ship correlation matrix. All analyses were conducted independently in
three different APOE strata: no APOE stratification and APOE &4 carri-
ers versus non-carriers. Gene-level significance was established as P <
2.7 x 10~¢ after Bonferroni correction for multiple testing (an average
of 20,000 genes annotated across all cohorts).

3.2.6 | SNP-based and gene-based meta-analysis

Meta-analysis of the gene-based and SNP-based association results
was carried out using inverse variance-weighted model based on P-
values/sample size and metrics to measure between-study hetero-
geneity (Cochran Q-test)”” as implemented in METAL software.”®
Using Bonferronifor multiple testing correction, a conservative thresh-
old for significance was set as P < 2.5x10~¢ and P < 1.6 x 104 for gene-

based and SNP-based respectively.

3.2.7 | DCDC2 SNP-based analyses in APOE ¢4
non-carriers

Variants in DCDC2 gene were individually tested for association with
episodic memory using EPACTS software. Sex, age at last evaluation,
education, principal components, and kinship matrix (only for the LLFS
cohort) were included as covariates in the model. SNP-level signifi-
cance was established as P < 1.5 x 105 after Bonferroni correction for
multiple testing based on the total number of SNPs tested in the meta-

analysis.

3.2.8 | SNP-based APOE interaction analyses

The regression-based approach implemented in the epistasis module
of PLINK’4 was used to run test pair-wise interactions between the
strongest DCDC2-associated variant in the SNP-based meta-analysis
(rs1340698) and APOE genotype, carriers, and non-carries of APOE ¢4.

3.2.9 | Brain transcriptomic analyses

RNA sequencing data processed in the present study can be accessed
on the Accelerating Medicines Partnership-Alzheimer’s Disease
(AMP-AD) Synapse knowledge portal (https://www.synapse.org). The
AMP-AD is a public-private partnership focused on the development
of new drug targets to prevent or treat AD. The threshold for nominal

significance was defined as P-values <.05.

3.2.10 |
study

Brain transcriptomic analysis ROSMAP

RNA sequencing (RNA-seq) data generated by ROSMAP77-82 con-
sisted of post mortem dorsolateral prefrontal cortex (DLPFC) brain
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Regional association plots for SNP-based DCDC2 analysis in the apolipoprotein E noe4 strata. The x-axis represent the

GRCh37/hg19 chromosomal position (Mb) of the tested SNP variant(s); the left y-axis correspond to the statistical strength of the SNP association
(log10 [P valuel). The right y-axis displays the estimated recombination rates (cM/Mb) to reflect the local LD structure. ADNI, Alzheimer’s Disease
Neuroimaging Initiative; AfAm, African-Americans; CH, Caribbean-Hispanics; CHAP, Chicago Health and Aging Project; LD, linkage disequilibrium;
LLFS, Long Life Family Study; NACC_ADGC, National Alzheimer’s Coordinating Center and Alzheimer’s Disease Genetics Consortium; NHW,
non-Hispanic Whites; NIA-LOAD, National Institute on Aging-Late Onset Alzheimer’s Disease Family Based Study; ROSMAP, Religious Orders
Study Rush Memory and Aging Project; SNP, single-nucleotide polymorphism; UKB, UK Biobank; WHICAP, Washington Heights-Inwood Columbia

Aging Project

3.3 | Results

The characteristics of the participants are summarized in Table 1. A
higher percentage of women was observed across all cohorts. The aver-
age age (at baseline and at last evaluation) and education of the partic-
ipants were 72 + 8, 78 + 8, and 14 + 3, respectively. Most participants
across cohorts were non-carriers of the APOE ¢4 allele, and as expected,

had lower frequency of dementia compared to APOE ¢4 carriers.

3.3.1 | Episodic memory trajectories

Within-study cohorts’ trajectories of episodic memory are shown in
Figure S2 in supporting information. Consistent with previous liter-
ature, most participants were aggregated into the EMTg;pjes Cluster
(individuals exhibiting sustained or improved memory function over
time). LCMM plots could not be generated for the LLFS cohort because,
as described in the Methods section, a different regression framework
was used.

3.3.2 | Meta-analysis of genome-wide gene-based
test of association

The quantile-quantile plots for the gene-based association results
within each of the cohorts stratify by APOE status are shown in
Figures S3-S5 in supporting information. The average statistics for
SNP allele frequencies (minimum, maximum, average, and SD) strat-
ify by study cohort are shown in Table S1 in supporting informa-
tion. In the non-APOE stratified sample, the meta-analysis results
(Table 2) revealed the DCDC2 gene as the strongest association sig-
nal (Ppeta= 3.7 x 1077). More interestingly, the DCDC2-EM associa-
tion was significant stronger among non-APOE ¢4 study participants
(Pmeta = 3.3 x 1078). Additional potential novel loci were observed in
both APOE strata; however, none of the associations reached the same
significance level as DCDC2. Secondary analyses excluding the UKBB
cohort (Table S2 in supporting information) corroborated that associa-
tions reported (Table 2) were not solely driven by the largest cohort in
the study.
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TABLE 4 Common SNP-based DCDC2-APOE epistasis models by study cohort

rs1340698

Cohort TEST

ADNI SNP
E4
SNP*s4

CHAP SNP
E4
SNP*c4

LLFS SNP
E4

>
[

SNP*c4
NACC SNP
E4
SNP*c4
NIA-LOAD SNP
E4
SNP*c4
ROSMAP SNP
E4
SNP*c4
UKB SNP
E4
SNP*c4
WHICAP_NHW SNP
E4
SNP*c4
WHICAP_AfAm SNP
E4
SNP*c4
WHICAP_CH SNP
E4

QO 0O 0 0 60 0 60 0600 60060 0600600606060 06006060606060600

SNP*e4

N B P
1090 0.04 134
1090 -0.07 1.7E-15
1,090 -0.07 .078
696 0.00 919
696 -0.02 .002
696 0.00 .908
1874 0.01 731
1874 0.00 671
1874 0.03 514
6774 0.01 .376
6774 —-0.04 1.4E-25
6774 —-0.01 .382
482 0.01 877
482 -0.03 .007
482 0.04 .393
1265 -0.03 .022
1265 —-0.03 8.6E-08
1265 -0.01 .837
20,174 0.01 9.8E-05
20,174 0.00 529
20,174 -0.01 .097
619 -0.03 3.6E-04
619 0.00 .383
619 0.04 .008
741 0.00 519
741 0.00 461
741 0.00 871
1529 0.00 .220
1529 -0.01 1.7E-05
1529 -0.01 452

Abbreviations: APOE, apolipoprotein E; ADNI, Alzheimer’s Disease Neuroimaging Initiative; CHAP, Chicago Health and Aging Project; LLFS, Long Life Family
Study; NACC_ADGC, National Alzheimer’s Coordinating Center and Alzheimer’s Disease Genetics Consortium; NIA-LOAD, National Institute on Aging-
Late Onset Alzheimer’s Disease Family Based Study; ROSMAP, Religious Orders Study Rush Memory and Aging Project; SNP, single-nucleotide polymor-
phism; UKBB, UK Biobank; WAA, WHICAP African-Americans; WCH, WHICAP Caribbean-Hispanics; WHICAP, Washington Heights-Inwood Columbia Aging

Project; WNHW, WHICAP Non-Hispanic Whites.

3.3.3 | Meta-analysis of DCDC2 single-SNP
association in the non-carriers of APOE ¢4

A total of 1144 variants in DCDC2 appeared to be present in all study
cohorts. The results from the SNP-based meta-analysis are summa-
rized in Table 3, and study regional association plots are shown in Fig-
ure 1. The strongest SNP-based association corresponded to intronic
common SNP rs1340698 (Preta = 1.3 x 1077). As seen in Figure S6 in
supporting information, the strong regional LD block (r? >0.6) included
the top-associated SNP rs1340698. The top SNP is located in the vicin-

ity of aweak neuronal enhancer that connects to one of the two DCDC2
promoters. However, neither the SNP nor the LD block yielded signifi-
cant eQTL effects in standard datasets (GTEx, GRASP).

3.34 | DCDC2 and APOE interaction

The results from epistatic models (Table 4) revealed that there is
no significant interaction between the strongest DCDC2-associated

variant in the SNP-based meta-analysis (rs1340698) and APOE
genotype.
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TABLE 5 Association of DCDC2 mRNA levels with cognitive and pathological phenotypes in the ROSMAP cohort
Trait n logFC t P P.g; FDRp,;
Slope of global cognition 661 1.10 4.73 2.8E-06 7.4E-05 0.002
Slope of episodic memory 660 0.97 4.31 1.9E-05 3.8E-04 0.004
Neuronal neurofibrillary tangles 691 —0.06 -3.70 2.3E-04 .003 0.021
Amyloid beta protein 692 —0.06 -3.26 0.001 .008 0.042
Neurofibrillary tangle burden 698 -0.17 -3.32 0.001 .009 0.038
Neuritic plaque burden 698 -0.13 -3.17 0.002 011 0.039
Pathological AD diagnosis 698 -0.11 —-3.46 0.001 .012 0.036
Global measure of pathology 698 -0.10 —2.88 0.004 .024 0.063
Neuronal loss substantia nigra 696 -0.08 -2.97 0.003 026 0.061
Transactive response DNA binding protein 640 -0.05 —-2.50 0.013 .138 0.290
Pathologic diagnosis of Lewy body diseases 674 -0.04 -2.07 0.039 .332 0.634
Diffuse plaque burden 698 —-0.06 —1.47 0.142 455 0.796
Global Parkinsonian Summary Score 696 -0.03 -1.81 0.071 482 0.779
Arteriolosclerosis 692 —-0.03 -1.37 0.173 .665 0.998
Any distribution of a-synuclein 674 —0.06 -1.78 0.075 .668 0.935
Gross cerebral infarctions 698 0.03 0.93 0.354 798 1.047
Micro cerebral infarctions 698 -0.03 -1.03 0.303 821 1.014
Cerebral amyloid angiopathy 683 —0.02 -0.71 0.481 .875 1.021
Diagnosis of Parkinson’s 695 0.03 0.48 0.630 .891 0.985
Hippocampal sclerosis 694 —-0.04 —-0.80 0.423 .898 0.943
Cerebral atherosclerosis 695 0.00 0.17 0.863 964 0.964

Abbreviations: AD, Alzheimer's disease; FDR, false discovery rate; ROSMAP, Religious Orders Study Rush Memory and Aging Project.

3.3.5 | Brain transcriptome results 021

ROSMAP results (Table 5) revealed false discovery rate (FDR)-adjusted

association between episodic memory maintenance and increased T — 0:2 ok oko

DCDC2 expression in DLPFC (P = 3.8 x 1074). When evaluating addi- 00 ——

tional ROSMAP neuropathological traits, the increased DCDC2 expres- . -

sion levels were associated with: tau protein (measured as the aver- . Study

age cortical density of antibodies to abnormally phosphorylated tau in E ool . ‘ = m‘;‘;

eight brain regions, P = .003), overall Ag level (measured as the aver-

age of the percent area that is occupied by Ag in eight different brain
regions, P =.008), neurofibrillary tangle burden (measured as the aver-
age of tangle count in silver-stained slides from five regions, P = .009),
neuritic plague burden (measured as the average of neuritic plaque
count in silver-stained slides from five regions, P = .011), and global
burden of AD pathology (measured as the average of counts in three
pathologies: neurofibrillary tangles, and neuritic and diffuse plaques in
silver-stained slides from five regions, P=.012).

Differential brain expression results from MSBB and Mayo datasets
(Figure 2) revealed an overall decreased DCDC2 expression (across all
brain areas when AD cases were compared to controls). DCDC2 down-
regulated expression achieved nominally statistical significance (~2-
fold change, P < .05) in two specific brain areas: STG (P =.007) and IFG
(P=.013).

sTG IFG TCX FP CBE PHG
Tissue

FIGURE 2 DCDC2 brain transcriptome results from Mount Sinai
Brain Bank (MSBB) and Mayo Clinic datasets. The x-axis represents
the brain regions analyzed from each cohort: MSBB: superior
temporal gyrus (STG), inferior frontal gyrus (IFG), frontal pole (FP), and
parahippocampal gyrus (PHG); Mayo Clinic: temporal cortex (TCX) and
cerebellum (CBE). The y-axis corresponds to the estimated
tissue-specific fold change in DCDC2 expression (in red upregulation,
in blue downregulation) and the 95% confidence intervals
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MR results identified common variant rs12216513 as significant
eQTL for DCDC2 expression (B = 0.29, standard error [SE] = 0.04,
P = 1.1 x 10-11). This DCDC2 variant is in tight LD with meta-analysis
topSNPs, common (rs1340698, D' = 0.88) and rare (rs147661578,
D’ = 0.84). However, the effect of DCDC2 variants on episodic memory
performance over time is not mediated by its brain expression (SMR P-
value =.950; Figure S7 in supporting information).

Because of the widely reported association of DCDC2 with phono-
logical awareness and phonemic decoding,8¢ secondary analyses in
WHICAP tested the DCDC2 association with LCMM estimated trajec-
tories of language.?’” The gene-based association results indicated no
significant association between DCDC2 and decay of language in any of

the APOE strata considered (Figure S8 in supporting information).
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